Jeffrey A. Wollschlager VP – Composite Technology & Aerospace Strategy Altair Engineering jaw@altair.com

Affiliate Associate Professor & PhD Student University of Washington jeffwoll@uw.edu

A Multiscale Approach to the Design and Analysis of WEAV3D Lattice Structures

WILLIAM E. BOEING DEPARTMENT OF AERONAUTICS & ASTRONAUTICS

UNIVERSITY of WASHINGTON

Introduction to WEAV3D Lattice Structures

WEAV3D Lattice Structures

Thermoplastic Prepreg Tape Woven into Lattice Structures Embedded in Thermoplastic Structural Components to Provide Cost/Weight/Strength Efficient Reinforcement

Lattice Structure (Thermoplastic Prepreg Tape)

Lattice Structure Embedded in a Precast Polymer Concrete Trench

Lattice Structure Embedded in a Thermoplastic Pallet

Lattice Structure Embedded in a Nature Fiber Nonwoven Mat

Rebar for Plastics [®]

Design and Analysis Challenges

How do you design and analyze something like this? (Example: Automotive Beltline Stiffener)

Design and Analysis Challenges

- What Warp Tape Material (Carbon, Glass, other)?
- What Fill Tape Material (Carbon, Glass, other)?
- What Tape Width (Warp & Fill)?
- What Tape Gap (Warp & Fill)?
- How Many Lattice Layers (Top & Bottom)
- What Bulk Material?

Even if we know these things, how to analyze structures made from these lattice structures?

Design and Analysis Challenges

Discrete Modeling

VS

-Explicitly model features -typically most Accurate Results -can be Difficult to Model -can be Computationally Expensive

Multiscale Modeling

Implicitly model features
-can achieve Accurate Results
-significantly Easier Modeling
-can be Computationally Efficient

Introduction to a Proposed Multiscale Solution

BE BOUNDLESS

WILLIAM E. BOEING DEPARTMENT OF AERONAUTICS & ASTRONAUTICS

UNIVERSITY of WASHINGTON

Proposed Multiscale Solution

"All truths are easy to understand once they are discovered; the point is to discover them." Galileo Galilei

We are simply connecting already discovered puzzle pieces to assemble a new puzzle picture

Puzzle Piece #1 Classical Lamination Theory

One of the earlier forms of Multiscale Analysis...

homogenization (upscaling)

starting from the strain of the k^{th} ply $(\varepsilon)_k = (\varepsilon^0) + z_k(\kappa)$ $(\sigma)_{k} = [\bar{Q}]_{k} ((\varepsilon)_{k} - (\alpha)_{k} \Delta T)$ $(\sigma)_k dz$ (N) = $\int [\bar{Q}]_k \left((\varepsilon^o) + z_k(\kappa) - (\alpha)_k \Delta T \right) dz$ $(N) = \sum_{n=1}^{\infty}$ $(N) = [A](\varepsilon^o) + [B](\kappa) - (N_t)$ the homogenized stiffnesses of a laminated plate are;

$$[A] = \sum_{k=1}^{n} [\bar{Q}]_{k} (z_{k} - z_{k-1})$$

$$[B] = \frac{1}{2} \sum_{k=1}^{n} [\bar{Q}]_{k} (z_{k}^{2} - z_{k-1}^{2})$$

$$(N_{t}) = \Delta T \sum_{k=1}^{n} [\bar{Q}]_{k} (\alpha)_{k} (z_{k} - z_{k-1})$$

Puzzle Piece #1 Classical Lamination Theory

One of the earlier forms of Multiscale Analysis...

Puzzle Piece #2 Phase Average Theory

Hill, R., "The Mathematical Theory of Plasticity", Oxford University Press, 1950 Hashin, Z., "Theory of Fiber Reinforced Materials", NASA CR-1974, March 1972 The average stress ($\overline{\sigma}$) of all phases (p) is the homogenized stress (σ°) Fundamental result for multiscale applications

Phase Average Modified Classical Lamination Theory

Phase Average Modified Classical Lamination Theory

$$[A] = \sum_{k=1}^{n} [\bar{Q}]_k (z_k - z_{k-1})$$
$$[B] = \frac{1}{2} \sum_{k=1}^{n} [\bar{Q}]_k (z_k^2 - z_{k-1}^2)$$
$$[D] = \frac{1}{3} \sum_{k=1}^{n} [\bar{Q}]_k (z_k^3 - z_{k-1}^3)$$

$$(N_t) = \Delta T \sum_{k=1}^{n} [\bar{Q}]_k (\alpha)_k (z_k - z_{k-1})$$
$$(M_t) = \Delta T \frac{1}{2} \sum_{k=1}^{n} [\bar{Q}]_k (\alpha)_k (z_k - z_{k-1})$$

 $\sum_{k=1}^{k}$

Phase Modified

$$[A] = \sum_{k=1}^{n} \left(\sum_{p=1}^{N} [\bar{Q}]_{k}^{p} V_{k}^{p} \right) (z_{k} - z_{k-1})$$

$$[B] = \frac{1}{2} \sum_{k=1}^{n} \left(\sum_{p=1}^{N} [\bar{Q}]_{k}^{p} V_{k}^{p} \right) (z_{k}^{2} - z_{k-1}^{2})$$

$$[D] = \frac{1}{3} \sum_{k=1}^{n} \left(\sum_{p=1}^{N} [\bar{Q}]_{k}^{p} V_{k}^{p} \right) (z_{k}^{3} - z_{k-1}^{3})$$

$$(N_{t}) = \Delta T \sum_{k=1}^{n} \left(\sum_{p=1}^{N} [\bar{Q}]_{k}^{p} (\alpha)_{k}^{p} V_{k}^{p} \right) (z_{k} - z_{k-1})$$

$$(M_{t}) = \Delta T \frac{1}{2} \sum_{k=1}^{n} \left(\sum_{p=1}^{N} [\bar{Q}]_{k}^{p} (\alpha)_{k}^{p} V_{k}^{p} \right) (z_{k} - z_{k-1})$$

 $\binom{N}{M} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \binom{\varepsilon^o}{\kappa} - \binom{N_t}{M_t}$

FEA Implementation & Numerical Validation

FEA Implementation & Architecture

Currently implemented in Altair HyperWorks (HyperMesh, OptiStruct, HyperView)

JPanel Input - Lattice + Panel Definitions

Individual Tape Material Properties (Warp1, Warp2, Fill1, Fill2, Bulk)

(1)	(2) / (6)	(3) / (7)	(4) / (8)	(5) / (9)	(10)
MAT9OR*	MID	E1	E2	E3	MNAME
	NU12	NU23	NU31	RHO	
	G12	G23	G13	A1	
	A2	A3			

WEAV3D Lattice Definitions

(1)	(2) / (6)	(3) / (7)	(4) / (8)	(5) / (9)	(10)
LATTICE*	LID	LNAME	GAP_W	GAP_F	
	MID_W1	THK_W1	NUM_W1	WTH_W1	
	MID_W2	THK_W2	NUM_W2	WTH_W2	
	MID_F1	THK_F1	NUM_F1	WHT_F1	
	MID_F2	THK_F2	NUM_F2	WHT_F2	
	MID_LB				

Panel Definitions

L	(1)	(2) / (6)	(3) / (7)	(4) / (8)	(5)/(9)	(10)
	PPANEL*	PID	PNAME	TYPE		
		LID	NUM_L	SYM	BOT	
Γ		THK	Z0	NSM	PHI	
		MID_BC	MID_BS	VOL_BS		

JPanel OUTPUT – MAT2 + PSHELL

Captures the Membrane, Bending, Transverse Shear, and Coupling Behavior

(1)	(2) / (6)	((3) / (7)	(4) / (8)		(5)/(9)	(10)	Multiscale Model
MAT2*	MID		Q11 Q12		Q13				
	Q22		Q23	Q33		RHO			
	A1		A2		A12				
Membrane			Bending						
								~	\times
(1)	(2)/(6)		(3) / (7)	(4	4) / (8)		(5) / (9)	(10)	
(1) PSHELL*	(2) / (6) PID	-	3) / (7) MID1	(4	4) / (8) THK	-	(5) / (9) MID2	(10)	
(1) PSHELL*	(2) / (6) PID 12I/T3	4	3) / (7) MID1 MID3	(4	4) / (8) THK TS/T	-	(5) / (9) MID2 NSM	(10)	
(1) PSHELL*	(2) / (6) PID 12I/T3 Z1	4	3) / (7) MID1 MID3 Z2	(4 	I) / (8) THK TS/T MID4	-	(5) / (9) MID2 NSM	(10)	
(1) PSHELL*	(2) / (6) PID 12I/T3 Z1	1	3) / (7) MID1 MID3 Z2	(4 	4) / (8) THK TS/T MID4	-	(5) / (9) MID2 NSM	(10)	

Material Properties

Glass/PP Uni Tape V^f = 45%

Property	Gpa	Psi
E ₁	36.00	5.220e6
E ₂	5.000	0.725e6
v ₁₂	0.300	0.300
V ₂₃	0.520	0.520
G ₁₂	1.760	0.255e6
G ₂₃	1.650	0.240e6
α_1	5.4e-6 /ºC	3.0e-6 /°F
α2	36.0e-6 /ºC	20.0e-6 /ºF
СРТ	0.350mm	0.0138"
ρ	1.650 g/cm ³	0.0596 lbs/in ³

Carbon/PP Uni Tape V^f = 50%

Property	GPa	psi
E ₁	110.0	15.950e6
E ₂	4.800	0.696e6
v ₁₂	0.320	0.320
V ₂₃	0.480	0.480
G ₁₂	2.000	0.290e6
G ₂₃	1.620	0.235e6
α_1	-0.54e-6 /ºC	-0.30e-6 /°F
α2	40.0e-6 /ºC	22.22e-6 /ºF
СРТ	0.160mm	0.0063"
ρ	1.310 g/cm ³	0.0473 lbs/in ³

Polypropylene (PP) Polymer

Property	GPa	psi
E	1.950	0.2828e6
ν	0.380	0.380
G	0.70652	0.1025e6
α	54.0e-6 /ºC	30.0e-6 /ºF
ρ	0.906 g/cm ³	0.0327 lbs/in ³

Lattice Geometry Extreme Case

Warp Geometry

 V^{w1} = 20% (Glass/PP Tape) V^{w2} = 40% (Carbon/PP Tape) V^{wb} = 20% (PP Polymer Bulk)

Fill Geometry

V^{f1} = 28.57% (Carbon/PP Tape) V^{f2} = 14.29% (Glass/PP Tape) V^{fb} = 57.14% (PP Polymer Bulk)

Panel Geometry

2 lattice layers bottom only Unsymmetric in-plane and through-thickness

In-plane Load (Nx Case) and a Thermal Processing Load (Δ T Case)

Bending Load (Mx Case)

Unsymmetric In-plane and through-thickness

Exercises Bending and Bending/In-Plane Coupling Behavior of Panels

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \\ M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{14} & B_{11} & B_{12} & B_{14} \\ A_{12} & A_{22} & A_{24} & B_{12} & B_{22} & B_{24} \\ A_{14} & A_{24} & A_{44} & B_{14} & B_{24} & B_{44} \\ B_{11} & B_{12} & B_{14} & D_{11} & D_{12} & D_{14} \\ B_{12} & B_{22} & B_{24} & D_{12} & D_{22} & D_{24} \\ B_{14} & B_{24} & B_{44} & D_{14} & D_{24} & D_{44} \end{bmatrix} \begin{bmatrix} \mathcal{E}_x^o \\ \mathcal{E}_y^o \\ \mathcal{Y}_{xy}^o \\ \mathcal{K}_x \\ \mathcal{K}_y \\ \mathcal{K}_{xy} \end{bmatrix} - \begin{bmatrix} N_{t,x} \\ N_{t,y} \\ \mathcal{K}_{t,xy} \\ \mathcal{M}_{t,y} \\ \mathcal{M}_{t,xy} \end{bmatrix}$$

Discrete vs Multiscale Model

Discrete Modeling

VS

-Explicitly model features -typically most Accurate Results -can be Difficult to Model -can be Computationally Expensive

Multiscale Modeling

Implicitly model features
-can achieve Accurate Results
-significantly Easier Modeling
-can be Computationally Efficient

Numerical Validation - Displacements

Min = -3.051E+00

Nx Case

Correctly bends "up" and all displacements within ±1% error of approximation

Discrete Model

Multiscale Model

Min = -3.050E+00

Numerical Validation - Displacements

Δx Case

Correctly bends "down" and all displacements within ±1% error of approximation

Discrete Model

Multiscale Model

Numerical Validation - Displacements

U₂

Mx Case

The in-plane unsymmetric geometry (extreme case) is not completely accounted for and causes increased but acceptable in-plane error but out-of-plane error still within ±1% error of approximation

Discrete Model

Multiscale Model

 $\otimes\,\sigma_x^{\text{ panel bulk}}$

 $\otimes\,\sigma_x^{\text{ lattice warp1}}$

 $\otimes\,\sigma_x^{\text{ lattice warp2}}$

(Carbon/PP)

 $\otimes\,\sigma_x^{\text{ lattice bulk}}$

🔽 na

(Glass/PP)

(PP)

Nx Case

The primary axial stress in each phase are captured and within ±10% error of approximation

Discrete Model

Contour Plot

3.000E+01 1.167E+01

-6 667E±00 -2.500E+01 -4.333E+0

-6.167E+01 -8.000E+01

-9.833E+01

-1.167E+02

-1.350E+02 No Result

Max = 2.818E+01

Min = 2.800E+01 Contour Plot

> 3.000E+01 1.167E+01

-6.667E+00

-2.500E+01

-4.333E+01 -6.167E+01

-8.000E+01 -9.833E+01

-1.167E+02 -1.350E+02

Max = -4.044E+01 Min = -4.570E+01

Contour Plot

3.000E+01 1.167E+01

-6.667E+00 -2.500E+01 -4.333E+01

-6.167E+01

-8.000E+01

-9.833E+01

-1.167E+02 -1.350E+02 No Result

Max = -1.294E+02

Min = -1.354E+02 Contour Plot

3.000E+01

1.167E+01

-6.667E+00

-2.500E+01

-4.333E+01

-6.167E+01 -8.000E+01

-9.833E+01

-1.167E+02 1.350E+02 No Result

Max = -1.628E+00

Min = -2.431E+00

Multiscale Model

1.3505+02

Max = -2.030E+00

Min = -2.030E+00

Δx Case

The thermal residual axial stress in each phase are captured and within ±10% error of approximation

Composite Stresses(Normal X Stress, ply7_Bulk (TOP))

Contour Plot

4.000E+01

Discrete Model

Multiscale Model

Contour Plot

Phase Stress(XX, SST) Analysis system

Δx Case

The thermal residual transverse stress in each phase are captured and within ±10% error of approximation

 $\otimes\,\sigma_x^{\text{ panel bulk}}$

(PP)

Contour Plot

2.500E+01 1.833E+01

1.167E+01

5.000E+00

-1.667E+00

-8.333E+00

-1.500E+01

-2.167E+01

-2.833E+01

-3.500E+01 No Result

Max = -4.169E+00

Min = -4.325E+00

Composite Stresses(Normal Y Stress, ply7_Bulk (TOP))

Discrete Model

Multiscale Model

 $\otimes\,\sigma_x^{\text{ panel bulk}}$

(PP)

Mx Case

The primary axial stress in bending in each phase are captured and within ±10% error of approximation

Contour Plot

1.500E+01 -8.889E+00

-3.278E+01 -5.667E+01

-8.056E+01

-1.044E+02

-1.283E+02

-1.522E+02

-1.761E+02 -2.000E+02 No Result

Max = 1.604E+01

Min = -2.039E+02

Composite Stresses(Normal X Stress, ply7_Bulk (TOP)

Discrete Model

Multiscale Model

Conclusions

- Discrete Modeling Methods for the Design and Analysis of WEAV3D Lattice Structures is impractical for general use cases
- Multiscale Methods appear to be a reasonable solution to the challenges of analyzing and designing WEAV3D Lattice Structures
- The error of approximation of such approaches appears to be within acceptable engineering error tolerances of ±10%
- The significant reduction in effort to create and apply the multiscale modeling, as opposed to discrete modeling, and given acceptable error of approximation, warrants the use multiscale modeling for this problem...

Continuing Project Phases

Continuing Forward

- 1. Experimental Test Program for Tape Properties
- 2. Experimental Test Program for 3pt Bend Panels
- 3. Numerical Verification (comparison of simulation with experiment as opposed to discrete model presented here)
- 4. Optimization Methodology & Software
- 5. An Optimization Example with Verification

Acknowledgements:

Christopher Oberste, Ph.D. (WEAV3D) Lee Krispin (Altair) Marco Salviato, Ph.D. (University of Washington)

WILLIAM E. BOEING DEPARTMENT OF AERONAUTICS & ASTRONAUTICS

UNIVERSITY of WASHINGTON