Efficient Simulation for Hybrid Overmolded Composite Lattice Structures: A Combined Implicit and Explicit FEA Approach

Meghana Kamble

SPE Automotive Composites Conference and Exhibition

Novi, Michigan

September 3-5, 2025

Outline

- Rebar for Plastics® Process Overview
- Key Terminologies
- Previous FEA Workflows
- JPanel Multiscale Modeling Method
- JPanel Experimental Validation
- Case Study
- Summary

Rebar for Plastics® — Process Overview

What is a Composite Lattice?

HANDLEABLE

Made of UD prepreg tapes

Woven and welded at interface for stability

Sheet or roll format

TUNABLE

Locally optimized:

- Lattice density
- Tape material

Strategic use of UD tapes in lattice provides a cost-effective and adaptable solution

Key Terminologies

- UD Tape: a unidirectional fiber reinforced polymer tape / tow(1 in)
- Homogenous lattice: Centre to Centre tape (C-to-C) spacing between tapes and tape materials are constant throughout the part geometry
- Heterogenous lattice: C-to-C spacing between tapes and/or tape materials varies throughout the part geometry
- Weave Density: relative C-to-C spacing within lattice
- Cover Factor: % of the area covered by the tape material in a specified dimension

Homogenous Lattice Pattern

Heterogenous Lattice Pattern

Previous Approach and Challenges

- Limitations of Commercially Available FEA Tools for Composites
- > Optimized for ply-based models (fiber type, orientation, etc.)
- Can't fully capture lattice-reinforced hybrid complexity

** Our Solution: Tailored FEA Workflows for Lattice Reinforced Hybrid Structures

To bridge these gaps, we developed custom workflows over time—each balancing trade-offs in accuracy, scalability, and setup effort:

2021

➤ 2022

➤ 2024

ANSYS RVE Method Altair Explicit Method JPanel (Multiscale) Method

ANSYS RVE Method – FEA Workflow

Representative Volume Elements (RVEs)

RVE in Homogenous Lattice Design

A RVE is defined as the smallest volume element of a material with a very accurate statistical representation of the typical material properties used in a full scale/macroscale model.

ANSYS RVE WORKFLOW

- Limitations:
- Labor-intensive
- Submodeling complexity makes it impractical for rapid design exploration

Altair Explicit Method - FEA Workflow

Altair Explicit Method Workflow

Limitations:

- •For large models' manual input of each tow's properties/position is labor-intensive
- Large/curved/sharp parts led to failure tow generation

JPanel - Multiscale Modeling Method

- Built into the Altair HyperWorks framework
- Based on Phase Average Modified Lamination Theory

Performs:

- > Pre-processing: Homogenizes lattice structures for fast global stiffness
- > Post-processing: De-homogenizes global results back to tape-level stresses

*Cannot handle mixed element types (shells + solids/beams) in current form

JPanel Pre Workflow

LATTICE definitions

JPanel Pre Workflow

PPANEL definitions

JPanel Workflow

JPanel Workflow-Experimental Validation (THREE-POINT BEND TEST)

Experiment Design for Flexure Test Samples

			Weft Tape		
Design No.	Molded Plastic Material	Weft Tape Material	No. of layers	Spacing (mm)	No. of Lattice layers
		Glass/PP (45 % Vf)	2	25.4	
		Carban /DD (40.0/ \/f)	2	50.8	
3	Braskem	Carbon /PP (40 % Vf)	2	25.4	
	Ti4003F PP	Mixed -Alternating Glass/PP (45 % Vf) & Carbon /PP (40 % Vf)		25.4	

Each plaque measured 152.4 mm × 152.4 mm with a nominal thickness of 2 mm.

Results: Chord Modulus Comparison

			% Deviation		
Design No.	JPanel Chord Modulus (GPa)	Experimental Chord Modulus (GPa)	Altair vs. Experiment		
Design 1	23.7	25.64	-8.1%		
Design 2	27.2	25.19	8.1%		
Design 3	53.2	52.99	0.4 %		
Design 4	40.2	39	3.1 %		

JPanel Multiscale model exhibited good correlation with the experimental results, overpredicting the experimental modulus by an average of 0.75 % (-8 % to 3%).

Case Study: Hybrid Simulation of an Automotive Part (JPanel + Explicit Method)

Case Study Overview

- Workflow Context
- Chosen part fully compatible with JPanel pre- & postprocessing
- Used as proxy for parts with shell, beam, & solid elements
- JPanel post-processing limited for mixed elements!
- Original Design
- Bunk panel made of marine-grade plywood
- Redesign Goal
- Integrate WEAV3D® lattice + CompoLite® HP
- Match or exceed marine-grade plywood performance
- Evaluation
- Test across 4 load cases & measure Z-axis deflection at critical points in each case

Optimization Overview

Baseline Model — 1st Iteration — Iterative Optimization Final Design

- Boundary Conditions
- Maintain Part Dimensions & Material
- Experimental Comparison
- Set Design Targets

- Homogeneous Lattice
- •50% Cover Factor
- Compare Targets

- Adjust Layers count
- Adjust Tow Materials &Spacing
- Select Regions of reinforcement
- Verify Design Targets

Custom Lattice

Baseline FEA and 1st Iteration Results

Homogeneous Lattice Bunk Bed Design (Explicit FEA Model)

Material Config.	Lattice Design	FEA Case 1 (in)	FEA Case 2 (in)	FEA Case 3 (in)	FEA Case 4 (in)
Marine grade plywood	N/A	0.78	0.25	2.27	0.66
CompoLite HP	N/A	1.73	0.46	3.53	1.56
PETG Glass Tape + CompoLite HP	50% GF - Single Lattice Layer	1.08	0.29	2.37	0.94
PETG Glass Tape + CompoLite HP	50% GF - Double Lattice Layer	0.84	0.24	1.95	0.74

Baseline & 1st Iteration Results

Establishes a baseline of structural performance using a uniform lattice layout before adding design complexity.

HETRO Design 19

- 23 lattice design iterations evaluated to meet stiffness targets
- 4 candidates achieved balanced cost, weight, and performance
- This case study highlights HETRO 19 integrated with CompoLite® HP

Summary of FEA - Predicted Z-axis Deflection HETRO Design 19

Material Config.	Lattice Design	FEA Case 1 (in)	FEA Case 2 (in)	FEA Case 3 (in)	FEA Case 4 (in)
Marine Grade Plywood	N/A	0.78	0.25	2.27	0.66
HETRO Design 19	Varying cover factor Single layer lattice	0.79	0.22	2.06	0.70

HETRO 19 demonstrates strong stiffness performance with targeted lattice placement, validating its potential as a viable and more efficient alternative

Selection of Post Process Method

Explicit modeling is chosen, as it is a faster for flat geometries

Post-processed Von Mises stress (MPa) Explicit Model

- Max tape stress: ~45 MPa (vs. <u>885 MPa strength</u>)
- Max bulk stress: ~6 MPa (vs. <u>16.5 MPa</u> strength)

Normalized Cost and Mass Comparison

HETRO 19 vs. Homogenous Double Layer:

- Weight saving: ~14.1%
- Cost saving : ~10.3%

Summary & Future Work

FEA Principle: Let the Part Dictate the Method

- 1. Shell-only → JPanel (Pre & Post)
- 2. Mixed-element:

JPanel (Pre) + Explicit → (flat)
JPanel (Pre) + ANSYS RVE → (curved/detailed)

HETRO 19 Bunk Panel Case

- Weight saving: ~14.1%
- Cost saving: ~10.3%
- Performance: matched that of marine plywood, with any underperformance limited to under 5%
- Future Work:
- Extend JPanel to support mixed mesh post-processing
- •Enhance memory and solver performance for large-scale models

In Partnership with:

