Composite Lattice Reinforced Part Optimization with FEA: An Automotive Door Component Case Study

Meghana Kamble

SPE Automotive Composites Conference and Exhibition

Novi, Michigan

September 4-6, 2024

Outline

- Hybrid Overmolding Rebar for Plastics®
- What are Composite Lattices & Key Terminologies
- Previous Challenges & Approach
- Altair Hypermesh Explicit Method
	- Overview
	- Explicit Method FEA Validation
	- Optimization Process Overview
- Case Study
- Summary & Future Work

Rebar for Plastics® — Process Overview

LIGHTWEIGHT STRUCTURAL **COMPOSITE PART**

- Lattice density
- Tape material

TUNABLE

Strategic use of UD tapes in lattice provides a cost-effective and adaptable solution

Locally optimized:

HANDLEABLE

- Made of UD prepreg tapes
- Woven and welded at interface for stability
- Sheet or roll format

What is a Composite Lattice ?

- **UD Tape:** a unidirectional fiber reinforced polymer tape / tow(1 in)
- **Warp Tape:** a UD tape that runs in the machine direction (Y-axis)
- Weft Tape: a UD tape that runs in the cross-machine direction (X-axis)
- **Homogenous lattice** : Centre to Centre tape (C-to-C) spacing between tapes and tape materials are constant throughout the part geometry
- **Heterogenous lattice** : C-to-C spacing between tapes and/or tape materials varies throughout the part geometry
- **Weave Density:** relative C-to-C spacing within lattice
- **Cover Factor:** % of the area covered by the tape material in a specified dimension

Homogenous Lattice

Heterogenous Lattice

Key Terminologies

© 2024 WEAV3D Inc.

www.weav3d

Previous Approach and Challenges

- Most commercially available FEA models are designed for ply-based composites, with fiber type, orientation, volume fraction, and weave type defined on a "per-ply" basis
- Hybrid structures, particularly lattice-reinforced hybrid structures, have additional degrees of freedom that cannot be fully captured within traditional ply-based models
- Previously ANSYS Representative Volume Elements (RVE) method was developed utilizing homogenization. While an improvement, it has limitations

www.weav3d

Representative Volume Elements (RVEs)

Sub region 2

RVE in Homogenous Lattice Design RVE in Heterogenous Lattice

A RVE is defined as the smallest volume element of a material with a very accurate statistical representation of the typical material properties used in a full scale/macroscale model.

© 2024 WEAV3D Inc.

Sub region 2

WFAV3D

IMPLICIT METHOD - ANSYS RVE WORKFLOW

Each step requires separate CAD models, effectively addresses limitations of traditional ply-based composites FEA but is labor-intensive

© 2024 WEAV3D Inc.

Submodel

Distinguish stresses in UD tapes and overmolded plastic

Altair Explicit Model - FEA Workflow

Altair FEA Workflow (Script Based Explicit

• Specific tow or bulk properties assigned to elements, automated process through scripting.

- Preprocessing : A part-level CAD model needed, material data, lattice design properties
- Postprocessing : Single post-processing step to obtain deformation and stress in tows and bulk layers

Post Process

- Deformation Results
- Stresses in tows and plastic

www.weav

Explicit Model Script

Updated Altair HyperMesh Database:

Explicit Model **Script** Input Output

Includes a composite stackup defining the lattice and bulk plastic

- Component geometry & mesh
- Local coordinate system specifying tow origin and direction of weft and warp tows

User inputs in an ASCII Text file

• Location, width, material, thickness, and layer count (in that order) for each lattice tow

57

FEA EXPLICIT MODEL VALIDATION (THREE-POINT BEND TEST)

Experiment Design for Flexure Test Samples

Altair's Explicit model exhibited good correlation with experimental results, overpredicting the experimental modulus by an average of 5.8 % (0.3 % - 13.5 %).

Results: Chord Modulus Comparison

Comparison of Methodologies: Time to Set & Solve Flexure Load Case

Compared to the ANSYS RVE method, Altair Explicit FEA is over 50% faster in flexure tests

Optimization Overview

•Experimental Comparison •Set Design Targets

•50% Cover Factor •Compare Targets

•Adjust Layers count •Adjust Tow Materials & Spacing •Select Regions of reinforcement •Verify Design Targets

© 2024 WEAV3D Inc.

Final Design

•Custom Lattice

Case Study : Optimizing Lattice Design for an Automotive Part Using Altair's Explicit FEA Method

- Baseline part material & thickness : NFPP 1700 gsm , 1.8mm thick
- Design target : Achieve weight & cost neutrality, maintaining deflection < 8.6 mm

Baseline FEA & Design Targets

• Load =150N applied over d = 60mm at points 8, 9 & 10 individually

Baseline FEA Model Validation

Good experimental correlation achieved.

- To achieve cost and weight neutrality **thinner mat** (1200 & 1000 gsm) were reinforced with WEAV3D **Lattice**
- Door inserts solely fabricated using thinner mats **exceeded** max. deflection limit

Optimization Strategy

www.weav3d.com

Optimization Strategy Contd. : Review of Iteration 1 Deflection Results

Iteration 1 : NFPP (1200 gsm & 1000 gsm) reinforced with homogenous single layer glass lattice, 50% cover factor, over entire part area

Optimization Strategy Contd. : Stress Plots

Critical regions identified , part divided into lattice reinforced and non reinforced region (overlaid)

Warp tape direction

Identified lattice reinforcement area divided into three heterogeneous sub-regions, based of stress plots

Summary of Iterative Optimization Strategy

Focus Areas:

Targeted regions with high deflection near allowable limits.

Weave Density Adjustments:

Assigned denser lattice design to critical areas. & reduced weave density in lower deflections regions.

Division into Sub-Regions:

Divided identified lattice reinforcement area into 3 homogenous sub-regions based on stress distribution observed in the baseline model

Unique Weft Cover Factors:

Each sub-region assigned a specific weft cover factor.

Warp Tows:

Maintained a constant cover factor of 50% to ensure stability during handling and forming

www.weav3d

Final Optimized Lattice Designs

Optimized lattice pattern for NFPP 1200 gsm

Optimized lattice pattern for NFPP 1000 gsm

© 2024 WEAV3D Inc.

O

 Ω

 \cap

Cost & Weight Savings

© 2024 WEAV3D Inc.

Optimized Optimized Lattice for NFPP Lattice for NFPP 1200 1000

Cost of lattice

- **FEA Methodology Advancements:**
- **Allowed parameterization of tape materials, spacing, and layer counts.**
- Reduced setup and solve time by ~50%.
- **Validation through Experimental Testing:**
- FEA predictions validated against experimental data from three-point bend tests showed good correlation
- Confirmed the reliability of the explicit modeling approach
- **Optimization and Performance Enhancement:**
- Achieved up to 24% weight savings while maintaining or enhancing mechanical properties.

Summary

© 2024 WEAV3D Inc.

www.weav3d

In Partnership with :

Enhanced Script Capabilities

Expand script to handle complex part surfaces using advanced projection or draping algorithms.

- Create an implicit model in Altair for rapid goal-seek optimization of lattice patterns.
- Use implicit model to identify candidate designs for precise stress distribution verification with the explicit model.

Development of Implicit Model

Future Work

