Composite Lattice Reinforced Part Optimization with FEA: An Automotive Door Component Case Study

Meghana Kamble

SPE Automotive Composites Conference and Exhibition

Novi, Michigan

September 4-6, 2024

Outline

- Hybrid Overmolding Rebar for Plastics®
- What are Composite Lattices & Key Terminologies
- Previous Challenges & Approach
- Altair Hypermesh Explicit Method
 - Overview
 - Explicit Method FEA Validation
 - Optimization Process Overview
- Case Study
- Summary & Future Work

Rebar for Plastics[®] — Process Overview

LIGHTWEIGHT STRUCTURAL COMPOSITE PART

What is a Composite Lattice ?

HANDLEABLE

- Made of UD prepreg tapes
- Woven and welded at interface for stability
- Sheet or roll format

Locally optimized:

- Lattice density
- Tape material

TUNABLE

<u>Strategic</u> use of UD tapes in lattice provides a cost-effective and adaptable solution

Key Terminologies

- **UD Tape:** a unidirectional fiber reinforced polymer tape / tow(1 in)
- Warp Tape: a UD tape that runs in the machine direction (Y-axis)
- Weft Tape: a UD tape that runs in the cross-machine direction (X-axis)
- Homogenous lattice : Centre to Centre tape (C-to-C) spacing between tapes and tape materials are constant throughout the part geometry
- Heterogenous lattice : C-to-C spacing between tapes and/or tape materials varies throughout the part geometry
- Weave Density: relative C-to-C spacing within lattice
- Cover Factor: % of the area covered by the tape material in a specified dimension

2024 WEAV3D Inc.

Hi	gh C)ens	ity	Low	Density		
1	1	1					
							B
							Warp Tapes
							War
						٢	
	We	eft Ta	apes				

WFAV3D

Previous Approach and Challenges

- Most commercially available FEA models are designed for ply-based composites, with fiber type, orientation, volume fraction, and weave type defined on a "per-ply" basis
- Hybrid structures, particularly lattice-reinforced hybrid structures, have additional degrees of freedom that cannot be fully captured within traditional ply-based models
- Previously ANSYS Representative Volume Elements (RVE) method was developed utilizing homogenization. While an improvement, it has limitations

Representative Volume Elements (RVEs)

Sub region 2

RVE in Homogenous Lattice Design

A RVE is defined as the smallest volume element of a material with a very accurate statistical representation of the typical material properties used in a full scale/macroscale model.

2024 WEAV3D Inc.

Sub region 2

RVE in Heterogenous Lattice

www.weav3d.com

WFAV3D

IMPLICIT METHOD - ANSYS RVE WORKFLOW

Each step requires separate CAD models, effectively addresses limitations of traditional ply-based composites FEA but is labor-intensive

Altair Explicit Model - FEA Workflow

Altair FEA Workflow (Script Based Explicit Model)

		223 203 203 203	
Develop Explicit Model Script	Generate	Solve	
 Input Text File Meshed shell geometry With local coordinates 	3D Shell Part with tows in HyperWorks using the text file	FEA	
	Altair FFA Work		r

Specific tow or bulk properties assigned to elements, automated process through scripting.

- Preprocessing : A part-level CAD model needed, material data, lattice design properties
- Postprocessing : Single post-processing step to obtain deformation and stress in tows and bulk layers

- Deformation Results
- Stresses in tows and plastic

W

ocess through scripting. ce design properties and stress in tows and bulk layers

Explicit Model Script

Altair HyperMesh database:

- Component geometry & mesh
- Local coordinate system • specifying tow origin and direction of weft and warp tows

Input

Explicit Model Script

Output

User inputs in an ASCII Text file

• Location, width, material, thickness, and layer count (in that order) for each lattice tow

c_

2024 WEAV3D Inc.

Updated Altair HyperMesh Database:

Includes a composite stackup defining the lattice and bulk plastic

FEA EXPLICIT MODEL VALIDATION (THREE-POINT BEND TEST)

Experiment Design for Flexure Test Samples

			Weft Ta	ре	
Design No.	Molded Plastic Material	Weft Tape Material	No. of layers	Spacing (mm)	No. of Lattice layers
		Glass/PP (45 % Vf)	2	25.4	2
2		Carbon $(DD (40.0/1)/f)$	2	50.8	2
3	Braskem	Carbon /PP (40 % Vf)	2	25.4	2
		Mixed -Alternating Glass/PP (45 % Vf) & Carbon /PP (40 % Vf)	2	25.4	

Results: Chord Modulus Comparison

Design No.	Altair Chord Modulus (GPa)	Experimental Chord Modulus (GPa)	
Design 1	25.98	25.64	
Design 2	27.23	25.19	
Design 3	53.14	52.99	
Design 4	44.3	39	

Altair's Explicit model exhibited good correlation with experimental results, overpredicting the experimental modulus by an average of 5.8 % (0.3 % - 13.5 %).

2024 WEAV3D Inc.

% Deviation

Altair vs. Experiment

1.32 %		
8.09 %		
0.28 %		
13.5 %		

www.weav3d.com

WEAV3D

Comparison of Methodologies: Time to Set & Solve Flexure Load Case

ANSYS RVE Method			Altair E	xplicit Metho	od
Overview of Steps	Setup Time	Solve Time	Overview of Steps	Setup Time	Solve Time
RVE CAD	~ 3 minutes	~ 1 minute	Input Text File	~1 minute	N/A
ANSYS Pre	~5 minutes	~ 30 seconds	FEA of the Part	~ 8 minutes	~ 40 seconds
FEA of Part	~ 5 minutes	~ 1 minute			
Submodel	~7 minutes	~ 1 minute			
Total Setup and Solve Time ~23 minutes			Total Setup and	Solve Time ~	10 minutes

Compared to the ANSYS RVE method, Altair Explicit FEA is over 50% faster in flexure tests

2024 WEAV3D Inc.

Optimization Overview

•Experimental Comparison •Set Design Targets

•50% Cover Factor •Compare Targets

 Adjust Layers count Adjust Tow Materials & Spacing Select Regions of reinforcement •Verify Design Targets

2024 WEAV3D Inc.

Final Design

Custom Lattice

Case Study : Optimizing Lattice Design for an Automotive Part Using Altair's Explicit FEA Method

2024 WEAV3D Inc.

Baseline FEA & Design Targets

- Load =150N applied over d = 60mm at points 8, 9 & 10 individually
- Baseline part material & thickness : NFPP 1700 gsm , 1.8mm thick •
- Design target : Achieve weight & cost neutrality, maintaining deflection < 8.6 mm .

2024 WEAV3D Inc.

Baseline FEA Model Validation

Load Location	Experimental Deflection (1700 gsm NFPP) (mm)	FEA Deflecti (1700 gsm NF (mm)
8	7.48	7.7
9	8.21	8.6
10	6.35	5.9

Good experimental correlation achieved.

2024 WEAV3D Inc.

Optimization Strategy

- To achieve cost and weight neutrality thinner mat (1200 & 1000 gsm) were reinforced with WEAV3D Lattice
- Door inserts solely fabricated using thinner mats exceeded max. deflection limit ٠

Door Insert Material	Deflection at Pt. 8	Deflection at Pt. 9	
NFPP 1700 gsm		8.6	
NFPP 1200 gsm	13.66	14.35	
NFPP 1000 gsm	15.18	16.02	

Deflection at Pt. 10

5.90	
8.62	

Optimization Strategy Contd. : Review of Iteration 1 Deflection Results

Iteration 1: NFPP (1200 gsm & 1000 gsm) reinforced with homogenous single layer glass lattice, 50% cover factor, over entire part area

Optimization Strategy Contd. : Stress Plots

Critical regions identified, part divided into lattice reinforced and non reinforced region (overlaid)

Warp tape direction

Identified lattice reinforcement area divided into three heterogeneous sub-regions, based of stress plots

2024 WEAV3D Inc.

Summary of Iterative Optimization Strategy

> Focus Areas:

Targeted regions with high deflection near allowable limits.

Weave Density Adjustments:

Assigned denser lattice design to critical areas. & reduced weave density in lower deflections regions.

Division into Sub-Regions:

Divided identified lattice reinforcement area into 3 homogenous sub-regions based on stress distribution observed in the baseline model

Unique Weft Cover Factors:

Each sub-region assigned a specific weft cover factor.

> Warp Tows:

Maintained a constant cover factor of 50% to ensure stability during handling and forming

Final Optimized Lattice Designs

Optimized lattice pattern for NFPP 1200 gsm

Optimized lattice pattern for NFPP 1000 gsm

2024 WEAV3D Inc.

0

C

Cost & Weight Savings

2024 WEAV3D Inc.

Summary

FEA Methodology Advancements:

- Allowed parameterization of tape materials, spacing, and layer counts.
- Reduced setup and solve time by ~50%.

Validation through Experimental Testing:

- FEA predictions validated against experimental data from three-point bend tests showed good correlation
- Confirmed the reliability of the explicit modeling approach
- **Optimization and Performance Enhancement:**
- Achieved up to 24% weight savings while maintaining or enhancing mechanical properties.

In Partnership with :

Future Work

Enhanced Script Capabilities

Expand script to handle complex part surfaces using advanced projection or draping algorithms.

Development of Implicit Model

- Create an implicit model in Altair for rapid goal-seek optimization of lattice patterns.
- Use implicit model to identify candidate designs for precise stress distribution verification with the explicit model.

