Cost Effective Thermoplastic Body Structures

WEAV3D

Christopher Oberste, Ph.D.

SPE Automotive Composites Conference and Exhibition

Novi, Michigan

September 4-6, 2024

Outline

- About WEAV3D[®] and Rebar for Plastics[®]
- Composite Door Design Challenge and Redesign Objectives
- Project Overview
 - Optimization
 - Prototyping
 - Validation
- Summary of Case Study Results
- Translating to New Applications
 - Production Pathways
 - Overview of Applications and Value Propositions

About WEAV3D

Manufacturer of composites lattice materials for automotive and construction applications

WEAV3D's patented **Rebar For Plastics**[®] solution enables <u>cost-effective</u>, <u>scalable</u>, <u>locally tunable</u> composite lattices for mass production.

The Process

© 2024 WEAV3D Inc.

LIGHTWEIGHT

STRUCTURAL

Why WEAV3D Composite Lattice?

LIGHTWEIGHT

COST-EFFECTIVE

- 30% + weight reduction vs. existing solutions
- Locally optimized lattice density

Automated continuous process

- Cost neutral vs. existing solutions
- Ability to mix tape types

COMPATIBLE

- Utilizes existing molding processes
- Sheet or roll format
- Choice of composite tape

Strategic use of UD tapes in lattice provides a cost-effective and adaptable solution

Design Challenge - Automotive Door

Excerpt from 2021 DoE Vehicle Technologies Office Annual Merit Review

Background

- Clemson University led a Department of Energy funded project to design an ultralightweight composite door, based on the 2016 Acura MDX.
- Carbon fiber/PA6 organosheet used for the inner frame and inner beltline stiffener, augmented with metal
- Clemson design achieved 45% weight reduction and 64% parts consolidation

Inner frame

- Manufacturing: Thermoforming
- Material: PA 6 + 50 % wt. Woven CF

Anti-intrusion beam assembly

- Manufacturing: Hot Stamped and Welded
- Material: Ultra high strength steel

Inner beltline stiffener

- Manufacturing: Thermoforming
- Material: PA 6 + 50 wt % Woven CF

Outer beltline stiffener

- Manufacturing: Extrusion and Welded
- Material: Aluminum 6061

Lower Reinforcement

- Manufacturing: 3D Printing Dies + Stamping
- Material: Aluminum 6061

Despite meeting performance and weight objectives, the cost of the composite door assembly was <u>twice</u> that of the original steel door, driven by the high cost of the carbon fiber organosheet.

WFAV3D

Redesign Objectives

Beltline Stiffener Demonstrator Goals

- Reduce cost from current CF/PA6 1. organosheet design
- 2. Achieve comparable performance under side impact load case
- 3. Maintain weight savings
- Maintain organosheet part geometry 4. and thickness to utilize existing tooling

In Partnership with:

WEAW3D°

WFAV3D

Collaborative Design: Value Optimization

WEAV3D leverages FEA topology optimization to tune cost and performance

© 2024 WEAV3D Inc.

www.weav3d.com

Prototype Manufacturing

www.weav3d.com

Results of Part Fixtured Flex Testing

Bending Stiffness – Beltline Stiffener Test

© 2024 WEAV3D Inc.

Results of Sub-Part FEA Validation (Stiffness)

www.weav3d.com

Results of Sub-Part FEA Validation (Fracture)

Composite Stresses(Von Mises Stress, Max) Composite Stresses(Von Mises Stress, Max) 6.379E+01 6.500E+01 5.500E+01 5.500E+01 4.500E+01 4.500E+01 4.000E+01 4.000E+01 3.000E+01 **Peak Stresses** 3.000E+01 2.500E+01 2.500E+01 2.000E+01 2.000E+01 1.500E+01 1.500E+01 5.000E+00 **Peak Stresses** 5.000E+00 0.000E+00 0.000E+00 No Result No Result Max = 6.379E+01 Max = 5.488E+0 Shell 4952 Shell 3053 Min = 3.576E-01 Min = 5.139E-02 Shell 15736 SIB **Crack Propagation Crack Propagation Crack Initiation Crack Initiation**

Design 8

2-Layer 100% Dense Carbon Inner, Glass Outer

Design 9

2-Layer 100% Dense Carbon Upper 2-Layer 100% Dense Glass Lower

www.weav3d.com

Cost Advantages Over Organosheet

Relative to CF/PA6 baseline, WEAV3D lattice optimization:

- Reduced part weight (-23%)
- Reduced cost (-50%)

•

- Increased trim yield from 27% to 44% by weight
 - Reduced trim waste (-62%)

Summary of Beltline Case Study

Beltline Stiffener Demonstrator

- 1. 50% cost reduction from baseline (CF/PA6 organosheet)
- 2. Comparable performance in highrate full-scale bending load case
- 3. 23% weight reduction from baseline
- 4. Good correlation between FEA and experiment in simplified load case

How do we translate this success to other parts and processes?

Production Pathways (Low/Med Complexity)

© 2024 WEAV3D Inc.

WEAV3D

www.weav3d.com

Production Pathways (Med/High Complexity)

www.weav3d.com

WEAV3D Automotive Applications

© 2024 WEAV3D Inc.

WEAV3D Commercial Vehicle Applications

WEAV3D Heavy Truck Applications

www.weav3d.com

WEAV3D

WEAV3D Applications & Value Proposition

	Structural Metal Replacement	Structuralizing Molded Plastics	Composite Optimization
Example Application	Body in White	Interior Panels	SMC Panels
Weight Reduction	+++	++	++
Part Count Reduction	++	+++	+
Upcycling of Recycled Reinforcements	++	++	+
Expanded Use of Natural Fillers	+	+++	+

© 2024 WEAV3D Inc.

To learn more about how WEAV3D can improve your products, contact us at info@weav3d.com

Automotive Body Structures

Sustainable Automotive Interiors

Lightweighting for the Masses™

www.weav3d.com

WEAV3D

@220224 WEAV3D Inc.